This program will provide innovative pathways to mine, extract, refine and recycle battery minerals, metals and materials to produce battery grade products. It will also demonstrate feasible precursor production in Australia and pilot plant testing for battery manufacturing.

This program aims to develop sustainable, traceable, cost-effective production pathways for refined battery metals and materials from their primary (natural) and secondary (recycled) resources.

The production pathways will meet the strict quality requirements of battery component precursors while ensuring Australian provenance throughout the value chain.

The five research themes are:

  • Environmental and waste management strategies from extraction of materials to the end of life of batteries;
  • Cost-competitive resources processing of battery minerals;
  • Premium quality battery grade materials;
  • Battery recycling, repurposing and reuse; and
  • Battery component precursor production.

Program Impacts

The investment in the resources, processing and recycling battery development program will produce the following key outputs:

  • Evidence-based processing strategies to allow repurposing and reuse of wastes or transformed process routes to convert wastes to useful co-products across the complete battery industries value chain;
  • Characterisation and mapping of Australian battery mineral resources, wastes and battery material intermediates and geological/metallurgical tags to identify Australian provenance and process routes for treatment;
  • Mass and energy balance flowsheets supported by experimental outcomes for novel processes. Waste generation, reagents, energy, water consumption will be mapped to the operating industrial ecosystem with which it interacts. The is applicable to metal extraction from both primary (natural) resources and secondary (recycled) resources;
  • Pilot demonstration plants that verify process technologies to extract and refine battery metals and materials from primary and secondary (recycled) resources, and to produce precursors; and
  • Tested and validated battery component (cathode, anode, and electrolyte) precursor exemplars with a guidance database capturing the role of impurity type, concentration range and particulate nature.